domingo, 30 de marzo de 2014

2º BACHILLERATO: TRANSCRIPCIÓN Y TRADUCCIÓN



La vida artificial ya está aquí

El ensamblaje del ADN permite fabricar una levadura con una parte de su genoma sintética

El avance permitirá conseguir mejores antibióticos o biocombustibles

Científicos de varias universidades norteamericanas y europeas han logrado “el monte Everest de la biología sintética”, como dicen los editores de Science: el primer cromosoma eucariótico fabricado en el laboratorio. Se trata de un cromosoma de levadura, el hongo que se usa para hacer cerveza, pan, biocombustible y la mitad de la investigación sobre los organismos eucariotas, como nosotros. La capacidad de introducirle un cromosoma sintético a ese organismo permitirá mejorar todo lo anterior, como hacer biocombustibles más sostenibles para el entorno o diseñar nuevos antibióticos, además de un nuevo continente de investigación sobre la pregunta del millón: cómo construir el genoma entero de un organismo superior. La reconstrucción de un neandertal, por ejemplo, sería imposible sin este paso esencial.
Fuente: Science. / HEBER LONGÁS / EL PAÍS
La biología sintética es una disciplina emergente que trata no ya de modificar organismos, sino de diseñarlos a partir de principios básicos. En los últimos cinco años ha logrado avances espectaculares, como la síntesis artificial del genoma completo de una bacteria y varios virus. Pero esta es la primera vez que consigue fabricar un cromosoma completo y funcional de un organismo superior, o eucariota (una célula buena, en griego, la que forma los humanos). El consorcio liderado por Jef Boeke, director del Instituto de Genética de Sistemas de la Universidad de Nueva York, presenta su rompedor resultado en la revista Science.
“Nuestra investigación mueve la aguja de la biología sintética desde la teoría hasta la realidad”, dice Boeke, uno de los pioneros de este campo. “Este trabajo representa el mayor paso que se ha dado hasta la fecha en el esfuerzo internacional para construir el genoma completo de una levadura sintética”.
Boeke empezó este proyecto hace siete años en otra universidad, la Johns Hopkins de Baltimore, enrolando a 60 estudiantes universitarios en un proyecto llamado Build a genome (construye un genoma). Las técnicas para sintetizar ADN han mejorado mucho en la última década, pero suelen producir tramos bastante cortos de secuencia, no mucho más allá de 100 o 200 letras (tgaagcct…). Los estudiantes se ocuparon de ir pegando esas secuencias sintéticas en tramos cada vez mayores. El cromosoma final mide cerca de 300.000 letras.

más información

Que un hito científico se refiera a la levadura (Saccharomyces cerevisiae), un hongo unicelular que ya utilizaban los antiguos egipcios para hacer la cerveza, parece una buena paradoja o un mal chiste, pero no es así. La división fundamental entre todos los seres vivos de la Tierra no es la que existe entre plantas y animales, ni entre microorganismos y especies grandes o macroscópicas: es entre procariotas (bacterias y arqueas) y eucariotas (todos los demás, incluidos nosotros).
Y lo importante de la levadura es que, por mucho que sea un organismo unicelular, cae en nuestro lado de la barrera. No es exagerado decir que la mayor parte de lo que sabemos sobre la biología humana se debe a la investigación de este familiar hongo de apariencia modesta. La levadura tiene unos 6.000 genes, y comparte un tercio de ellos con el ser humano, pese a los 1.000 millones de años de evolución que nos separan.
Los cromosomas son los paquetes en que se reparte el genoma de los organismos superiores, o eucariotas. Son mucho más que un trozo de ADN: están empaquetados en complejas arquitecturas formadas por centenares de proteínas que interactúan con el material genético, como las histonas. Están dotados de un centrómero, la maquinaria especializada en distribuir una copia del genoma a cada célula hija en cada ciclo de división celular; y sus extremos están protegidos por unos sistemas singulares, los telómeros, que garantizan la integridad de la información genética en cada ciclo de replicación. De ahí que el logro actual vaya mucho más allá que la síntesis del genoma de una bacteria que se había logrado hasta ahora.
Los humanos tenemos el genoma dividido en 23 cromosomas (o pares de cromosomas); la levadura lo tiene distribuido en 16, y los científicos se han centrado en el más pequeño de ellos, el número 3. Han extraído al hongo su cromosoma 3 natural y lo han sustituido por su versión sintética, llamada synIII, que cubre las funciones de su colega natural pese a estar extensivamente alterado con toda clase de elementos artificiales diseñados para facilitar su manipulación en el futuro inmediato.
La fabricación de antibióticos es actualmente obra de microorganismos
Que el cromosoma sintético funcione en su entorno natural, una célula viva de levadura, es el verdadero hito del trabajo, según los investigadores. “Hemos mostrado”, dice Boeke, “que las células de levadura que llevan el cromosoma sintético son notablemente normales; se comportan de forma casi idéntica a las levaduras naturales, salvo por que ahora poseen nuevas capacidades y pueden hacer cosas que sus versiones silvestres no pueden hacer”.
La versión natural del cromosoma 3 de Saccharomyces cerevisiae tiene 316.667 bases (las letras del ADN a, g, t, c). La versión sintética es un poco más corta, con 273.871 bases, como consecuencia de las más de 500 alteraciones que los científicos han introducido en él. Entre estas modificaciones se encuentra la eliminación de muchos tramos de ADN repetitivo que no tienen función alguna, ya estén situados entre un gen y otro (secuencias intergénicas) o dentro mismo de los genes (intrones).
También han eliminado los transposones, o genes que saltan de una posición a otra en el genoma de todos los organismos eucariotas. El cromosoma artificial synIII también lleva muchos tramos de ADN añadidos por los investigadores. El número total de cambios de un tipo u otro se acerca a los 50.000, pese a lo cual el cromosoma sintético sigue siendo funcional.
Pese a sus evidentes implicaciones para la biología fundamental –¿puede construirse el genoma de un organismo superior, incluido el ser humano, a partir de compuestos químicos sacados de un bote de la estantería?—, el proyecto tiene sobre todo objetivos aplicados. Y no solo en las áreas industriales, como la fabricación de pan y bebidas, en las que este organismo se ha utilizado siempre.
Ya ha habido virus y bacterias de laboratorio
Una de las aplicaciones que resaltan los autores es la mejora en la manufactura de medicinas como la artemisina para la malaria o la vacuna para la hepatitis B. Como la mayoría de los antibióticos provienen de hongos, y la levadura es uno de ellos, también cabe predecir avances en el diseño y producción de estos medicamentos.
Más a largo plazo, las levaduras sintéticas pueden facilitar la síntesis de medicamentos anticancerosos como el Taxol, cuya vía de síntesis es tan complicada e implica a tantos genes que supone un formidable escollo para las tecnologías convencionales. En un área industrial muy distinta, esta tecnología, según esperan sus autores, servirá para desarrollar biocombustibles más eficaces que los actuales, entre ellos alcoholes como el butanol, y también diésel de origen biológico.
Y, por supuesto, synIII es solo el primero de los 16 cromosomas de la levadura que los investigadores logran sintetizar. Los intentos de repetir la hazaña con los otros 15 cromosomas ya están en proyecto, y forman parte de un programa internacional llamado Sc 2.0 que implica a científicos de Estados Unidos, China, Australia, Singapur y el Reino Unido. En el nombre del proyecto, Sc es por Saccharomyces cerevisiae, el nombre científico de la levadura de la cerveza, y el 2.0 quiere enfatizar lo mucho que los seres vivos están a punto de parecerse a cualquier otro desarrollo tecnológico. El objetivo es construir un genoma completo de levadura, o el primer organismo complejo sintetizado en el tubo de ensayo.
Echando la vista más hacia el futuro, cabe especular sobre la resurrección de especies extintas como el mamut o el neandertal, cuyos genomas ya han sido secuenciados a partir de sus restos fósiles. Si estos proyectos llegan a abordarse alguna vez, tendrán que basarse en una técnica similar a la que Boeke y sus colegas acaban de poner a punto para este engañosamente simple hongo que tan servicial ha resultado a la especie humana desde los albores del neolítico.

viernes, 14 de marzo de 2014



Sí, el gen de la gordura existe
Científicos de Chicago y Sevilla resuelven el enigma hereditario de la obesidad

Todo el mundo sabe que el truco para mantenerse delgado es comer poco, pero pocos conocen que esa es solo la mitad de la historia. La otra mitad nos viene puesta de nacimiento: son los factores genéticos de la gordura, que permiten a los privilegiados comer como ceporros sin engordar y condenan al resto a elegir entre el hambre y el sobrepeso. En un brillante trabajo detectivesco, científicos de Chicago y Sevilla han identificado ahora al principal gen del engorde humano. Se llama iroquois, y se conoce desde hace décadas, pero nadie había imaginado que se dedicara a hacer manteca y contribuyera a la epidemia mundial de obesidad y diabetes.
¿Será esta por fin la verdadera píldora antigrasa? "Faltan dos cosas", responde el líder del equipo sevillano, José Luis Gómez Skarmeta. "Primero tenemos que diseccionar el elemento de ADN regulador que hemos identificado; y después ver cuál es la red de genes regulados por él, porque entre ellos estarán las dianas interesantes para probar baterías de nuevos fármacos". La colaboración entre el grupo de Skarmeta, del Centro Andaluz de Biología del Desarrollo en Sevilla, y el de Marcelo Nóbrega, del departamento de genética humana de la Universidad de Chicago, se presenta este jueves en la revista Nature.
En los últimos 10 años se han hecho decenas de los llamados estudios de asociación de amplitud genómica (GWAS por genome-wide association studies) para conocer las componentes genéticas de la obesidad, o de la propensión a adquirirla. Se toman grandes muestras de una población humana u otra, se secuencia su genoma (actcgtcga… y así hasta 3.000 millones de letras) y se buscan correlaciones entre la obesidad y las variantes en el texto genético.
El resultado afecta también a la diabetes y a otras enfermedades
Estos estudios han identificado 75 posiciones en el genoma humano cuyas variaciones tienden a ocurrir en las personas gordas. En casi todos los trabajos la asociación más fuerte aparecía insistentemente dentro de un gen llamado FTO (fat mass and obesity associated, gen asociado a la masa de grasa y la obesidad), cuyo nombre deja poco margen de duda sobre su implicación. Las bases de datos de la literatura científica recogen más de 2.000 artículos sobre este gen publicados en los últimos años.
Pero la pista, sabemos ahora, era no solo engañosa, sino sofisticadamente engañosa. Es cierto que el gen FTO está implicado en el metabolismo de la grasa, como se ha comprobado en modelos animales y experimentos bioquímicos; y es cierto también que sus variaciones son el principal factor de predisposición hereditaria a la obesidad, la diabetes de tipo 2 (la asociada al sobrepeso) y todas sus secuelas cardiovasculares, neurodegenerativas y cancerosas.
Pero el gen FTO es inocente: el culpable es otro gen llamado iroquois 3, o IRX3, situado muy lejos, a medio millón de 'letras' (o bases, las unidades del ADN) de distancia. El gen FTO no interviene como tal: se limita a aportar un elemento regulador (segmento de ADN que regula a otros genes) que actúa a grandes distancias sobre el otro gen, iroquois 3. Esta es la contribución esencial de Nóbrega, Skarmeta y sus colegas de Chicago y Sevilla.
“Entre el 35% y el 40% de la obesidad es genética”, dice Albert Lacube
El resultado no solo afecta al campo de la obesidad y la diabetes, sino a la mayoría de los estudios de propensión genética a cualquier enfermedad que se han hecho en los últimos 10 años, los mencionados GWAS, o estudios de asociación de amplitud genómica entre las variantes del ADN y las enfermedades humanas.
La mayoría de estas variantes (o mutaciones) no dan de lleno a ningún gen, sino que aparecen salpicadas por los vastos desiertos de ADN, la materia oscura que ocupa la mayoría del genoma pero no contiene ningún gen. El nuevo estudio revela que esas mutaciones pueden estar regulando la actividad en genes muy lejanos, y ofrece la estrategia bioquímica para encontrar cuáles son. "De forma generalizada, se están mirando los genes erróneos", dice Skarmeta.
El gen iroquois 3, o IRX3, no es una buena diana farmacológica, porque interviene en muchos procesos esenciales del desarrollo, y desactivarlo con fármacos no parece una buena idea. Los investigadores tienen evidencias de que su función esencial en la obesidad tiene lugar en el hipotálamo, el órgano que conecta el cerebro con los sistemas de regulación hormonal que armonizan el funcionamiento del resto del cuerpo. Y esperan que las redes genéticas que interactúan con IRX3 podrán conducirles hacia las dianas farmacológicas realmente útiles.
El nombre del gen se debe a los indios iroqueses, por su cresta característica
¿Por qué estudiar la genética de la obesidad? ¿No tenemos ya claro que todo se basa en un balance de la energía ingerida y gastada? "Entre el 35% y el 40% de la obesidad es genética", dice Albert Lacube, jefe del servicio de Endocrinología del Hospital Universitario Arnau de Vilanova, en Lleida. "Por supuesto, es una enfermedad multigénica, debida a pequeñas contribuciones de muchos genes, y esto ha limitado hasta ahora su utilidad en la práctica clínica".
Los avances que espera este experto en el futuro inmediato se refieren a la creciente personalización de las estrategias terapéuticas o preventivas. "El genoma dará mucha información útil sobre la mejor intervención para cada paciente; ya ahora hay marcadores genéticos que predicen la probabilidad de que un niño desarrolle obesidad, o diabetes de tipo 2".
Más a medio plazo, la obesidad, la enfermedad metabólica y la diabetes conforman uno de los objetivos prioritarios de la Big Pharma, la gran industria farmacéutica. Los cerebros de este sector han apostado en firme por las píldoras anti-grasa, y no solo porque esperan venderlas como churros a los particulares, sino también, o sobre todo, porque predicen que los Gobiernos encontrarán rentable financiárselas a sus ciudadanos. Una píldora que reduzca la obesidad o sus fatales consecuencias siempre será más barata que tratar un infarto o extirpar un tumor.
No va a resultar fácil. El caso del gen iroquois 3, o IRX3, revela lo intrincada y sutil que puede llegar a ser la vía genética hacia un fármaco. Los investigadores ya creían contar con una diana sólida, el gen FTO, que fabrica (codifica, o significa) una enzima importante para el metabolismo de la grasa, y que está activo en los adipocitos, las células que constituyen nuestro tejido graso.
La mutación del iroquois en la mosca del vinagre la dejó medio calva
Pero hacia donde apuntaban realmente esas evidencias era a otro gen lejano, IRX3, que cumple funciones esenciales en virtualmente cualquier víscera del cuerpo. Y es su acción en el hipotálamo cerebral lo que resulta relevante para la acumulación de la grasa humana.
En este sentido, la gordura está en el cerebro.
Los genes iroquois (iroqueses) son viejos conocidos de los genetistas y los biólogos del desarrollo. Son miembros de una aristocracia del ADN, los genes selectores, que fueron descubiertos en la mosca favorita de los genetistas, Drosophila melanogaster. Son genes que definen sectores geométricos del cuerpo, tanto en la mosca como en cualquier otro animal, incluido el ser humano. Un ejemplo son los genes Hox, que aparecen en fila en el cromosoma y controlan, en ese mismo orden, la colocación de las diferentes partes del cuerpo en su secuencia correcta: primero los segmentos de la cabeza, luego los cervicales, dorsales, lumbares y demás.
Los iroquois forman parte de un sistema de subdivisión perpendicular al eje de los Hox: el que divide el cuerpo en bandas longitudinales dorsales, laterales y ventrales. Las primeras mutaciones descubiertas ahí dejaban calva a la mosca salvo por una banda de pelos dorsal en cabeza y tórax, como el peinado característico de los indios iroqueses (iroquois en francés), pobladores del sur de Canadá y el norte de Estados Unidos.
La Big Pharma ha apostado fuerte por las píldoras antigrasa. Curiosamente, los genes iroquois, los genes Hox y otros genes selectores tienen un origen común. Los científicos lo saben porque todos ellos comparten una secuencia de ADN muy característica, llamada homeobox. Los genes significan proteínas, y la homeobox significa un segmento de proteína que se une con avidez a otros genes, activándolos o silenciándolos. De ahí que los científicos crean que IRX3, el tercer iroqués, ejerza su influencia sobre la obesidad mediante la regulación de cientos de otros genes. Y ya están a su captura. 





En busca del ‘gen de la obesidad’
Científicos españoles estudian si el sobrepeso y el cáncer tienen origen común

Los investigadores Rubén Nogueiras (izquierda) y Miguel López. / ANXO IGLESIAS
En los países desarrollados cada vez hay más obesidad. La obesidad es uno de los principales factores de riesgo para desarrollar cáncer. Estos hechos, combinados, están haciendo que no engordar empiece a ser considerado tan importante para prevenir el cáncer como no fumar, y también han convertido en un reto acuciante el esclarecer la relación entre obesidad y cáncer. En este contexto emerge una idea revolucionaria, a medida que los investigadores profundizan en las causas de ambas enfermedades: ¿Y si la obesidad y el cáncer tuvieran un origen común?
Se engorda en el cerebro. Y en concreto en el hipotálamo, la región cerebral donde se regulan las ganas de comer —vía las sensaciones de saciedad y hambre—, y el gasto metabólico. Son las entradas y salidas de energía en el organismo: la obesidad llega cuando sistemáticamente las calorías que entran con la ingesta superan a las que quema el metabolismo. El proceso está finísimamente regulado sobre todo por ciertas poblaciones de neuronas en el hipotálamo, que integran la información enviada en forma de hormonas por órganos periféricos como el intestino, el páncreas y la propia grasa corporal.
El estudio de todas estas señales químicas es un área en auge que en los últimos 15 años no ha dejado de producir novedades. Una de ellas es precisamente el hallazgo de que la capa de grasa corporal, el tejido adiposo, hace mucho más que simplemente añadir volumen o, como mucho, aislar: ahora se sabe que los michelines son un importante emisor de señales químicas al resto del organismo.
Pero por ahora ninguno de los avances logrados ha dado con una cura de la obesidad, un tratamiento farmacológico que regule la ingesta y el gasto calórico de forma que el organismo no engorde.
En Santiago buscan el papel del gen P53 en el control metabólico
En última instancia ese es el objetivo último de los grupos de Rubén Nogueiras y Miguel López, en la Universidad de Santiago de Compostela. Ambos son Cajales —con un contrato que no garantiza permanencia—, ambos se doctoraron en Santiago bajo la dirección de Carlos Diéguez y ambos han obtenido este año sendas ayudas del Consejo Europeo de Investigación (ERC, en sus siglas en inglés), las prestigiosas y competitivas Starting Grant para llevar adelante sus proyectos durante cinco años —más tiempo incluso que lo que duran sus contratos—.
El proyecto de Nogueiras se titula “P53 como nuevo mediador del balance energético en el cerebro”. Y lo primero que llama la atención es que P53 es un gen que lleva décadas copando titulares por su papel crucial en el cáncer, en concreto como protector ante su desarrollo. Pero en los últimos años se ha descubierto que P53 interviene, además, en el envejecimiento, en diabetes, en enfermedades neurodegenerativas y en otros muchos procesos, entre ellos el metabolismo. Lo que conduce a la obesidad.
Nadie ha dado con un fármaco que regule la ingesta y el gasto calórico
“Está claro que hay una relación entre el cáncer y la obesidad”, explica Nogueiras. “Las personas obesas tienen bastante más probabilidad de tener cáncer, y se sabe muy poco sobre por qué ocurre esto. Creemos que P53 puede ayudar a entenderlo”.
Lo innovador de su proyecto es que trata de averiguar el papel de P53 en el centro de control de la obesidad en el hipotálamo. No es un tiro a ciegas. Hace unos años se descubrió que en las células del tejido adiposo de los ratones obesos, en concreto en la llamada grasa blanca, P53 no se expresa de forma normal. “Además", explica Nogueiras, “cuando se elimina P53 solo de las células de grasa blanca la sensibilidad a la insulina cambia”. La insulina es una de las hormonas mensajeras que los órganos periféricos —en este caso el páncreas— envía al cerebro para regular la ingesta; una respuesta anómala de las células a la insulina se relaciona con diabetes y obesidad.
La pregunta ahora es qué pasa con P53 en las poblaciones de neuronas que regulan la ingesta y el gasto metabólico. Es un terreno que nadie ha explorado aún, de ahí la importancia que ha concedido el ERC al trabajo de Nogueiras. El grupo de este investigador necesitará al menos un año para crear ratones que no expresen P53 justo en determinadas poblaciones de neuronas, y otro tanto o más para ver y analizar qué pasa y obtener los primeros resultados.
Grasa en las neuronas

Cuando Miguel López, de 38 años, estudió biología molecular las neuronas solo comían glucosa. O al menos eso se decía en los libros de texto. Uno de los hallazgos importantes de los últimos tiempos es que las neuronas también necesitan grasa —en el término técnico, lípidos—. Las neuronas usan los lípidos para fabricar moléculas con que se comunican entre sí.
El proyecto de López financiado por el Consejo Europeo de Investigación (ERC) investiga una idea atrevida: la posibilidad de que la obesidad tenga que ver con que las neuronas del centro de control de la obesidad en el cerebro se hayan envenenado con lípidos tóxicos.
Como los demás hallazgos recientes en este terreno, esta hipótesis elimina el sentimiento de culpa que a menudo ataca a los obesos, acusados socialmente de no saber contenerse.
La obesidad no es resultado del pecado de la gula, sino “una enfermedad compleja producto de la interacción entre genes y ambiente”, explica López. Si se confirmara la teoría de la toxicidad de los lípidos, la obesidad —o al menos alguna de sus formas— aparecería en personas que producen en exceso estas grasas, para ellos venenosas. Se sabe hace tiempo que determinados lípidos, cuando se metabolizan, generan moléculas tóxicas en distintos órganos del cuerpo. Pero la idea nunca se ha estudiado en el cerebro.
López actuará sobre distintos grupos de neuronas en el hipotálamo —son poblaciones de apenas unos cientos de neuronas, una prueba de que la regulación de lo que come y gasta el organismo es un proceso realmente fino—. En última instancia, esperan obtener datos para desarrollar en el futuro fármacos contra la obesidad.
Para entonces ya tendrá los suyos Manuel Serrano, del Centro Nacional de Investigaciones Oncológicas (CNIO), que también obtuvo en 2009 una ayuda del ERC —en su caso para investigadores senior— para estudiar la relación entre el cáncer y el envejecimiento. Junto con María Blasco, también en el CNIO, Serrano ha demostrado en ratones que el vínculo entre ambos procesos no es inverso: alterando determinados genes, entre ellos P53, los animales pueden vivir mucho más tiempo y además sin cáncer.
Es un cambio de paradigma, porque hasta hace poco se asumía que la aparición de tumores era un impuesto obligado si el organismo vive más tiempo. Ahora la interpretación es otra: “Creemos que lo que hacen genes protectores, como P53, es evitar no solo el cáncer, sino el daño celular en su conjunto [alteraciones normales en el funcionamiento de la célula que aparecen y se van acumulando a lo largo de su vida]”, explica Serrano. “Y al hacerlo protegen al organismo del envejecimiento, del cáncer, de la resistencia a la insulina, la diabetes, la obesidad, las enfermedades cardiovasculares...”.
Si esa visión se confirma la obesidad y el cáncer podrían ser tratados como facetas distintas de un mismo síndrome en el que también cabría —quizás lo englobaría todo— el envejecimiento. Y puede que en un futuro baste con tocar unos pocos genes clave para curar ese síndrome y lograr así una vejez más tardía y más sana.